
Abstract A statistical approach is presented for

selection of best performing lines for commercial re-

lease and best parents for future breeding programs

from standard agronomic trials. The method involves

the partitioning of the genetic effect of a line into

additive and non-additive effects using pedigree based

inter-line relationships, in a similar manner to that used

in animal breeding. A difference is the ability to esti-

mate non-additive effects. Line performance can be

assessed by an overall genetic line effect with greater

accuracy than when ignoring pedigree information and

the additive effects are predicted breeding values. A

generalized definition of heritability is developed to

account for the complex models presented.

Introduction

In most crop breeding programs there are two funda-

mental goals. The main goal is to identify the best

performing lines for commercial release, and the sec-

ond goal is to identify lines that can be used as parents

in future crosses.

The selection of best performing lines for traits of

interest is undertaken through well-designed breeding

trials conducted across multiple environments and

analyzed appropriately. Good trial design and sub-

sequent statistical analysis enable efficient separation

of genetic and environmental effects. Suitable designs

may include classical designs such as incomplete block,

row–column, a latinized row–column (John et al. 2002)

to the more recently devised designs which are efficient

for a prespecified correlation structure (Martin et al.

2004). The method of analysis should support the de-

sign used and the aim of the trial. Although most ap-

proaches for single trials (for example, Besag and

Kempton 1986; Cullis and Gleeson 1991; Gilmour

et al. 1997) consider the genetic effects of the lines as

fixed effects, if the ultimate aim of the analysis is

selection line effects should be treated as random

(Smith et al. 2005).

The suitability of lines as parents can be conducted

through specialized mating designs such as the diallel

cross (see Topal et al. 2004 for a recent example). These

designs allow the partitioning of the genetic effect of a

line into additive and non-additive effects. The additive

effects or breeding values obtained for each line mea-

sure the potential of a line as a parent (Falconer and

Mackay 1996) and for a diallel cross are termed ‘‘gen-

eral combining ability’’. The non-additive effects ob-

tained for each line are associated with dominance and
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epistatic effects and for a diallel cross are termed

‘‘specific combining ability’’. However, there are several

disadvantages of formal mating designs. Firstly, only

small numbers of lines can be examined at once. Sec-

ondly, they are necessarily conducted in addition to any

breeding trials and usually performed after or near the

commercial release of a line therefore restricting their

usefulness. Because of these disadvantages, the suit-

ability of lines as parents is often assessed in the same

way as their potential for commercial release, that is, by

examining their overall genetic effect. However, if the

attributes of a released line are a result of interactions

between genes (epistasis), then this approach is less than

ideal. In this case, the performance of the line is greater

than the sum of alleles leading to an inflated assessment

of breeding potential.

The additive genetic effect or breeding value is

widely determined in animal breeding trials and is used

to assess the potential of an animal as a parent (see

Brown et al. 2000 for a recent example in sheep), since

it is not simple to replicate genotypes. The approach

involves the incorporation of the pedigree information

of animals into the trial analysis in the form of the

additive relationship matrix A (Henderson 1976). The

animal approach incorporating the pedigree informa-

tion has however, only recently been advocated for use

in breeding programs for plants, see for example Durel

et al. (1998) and Dutkowski et al. (2002). Davik and

Honne (2005) also incorporate the pedigree informa-

tion, but in a diallel setting.

In this paper, an approach is developed where the

pedigree information is incorporated into the analysis

of single trials for field crops. This involves the use of

an additive relationship matrix (allowing for inbreed-

ing) and hence the estimation of breeding values. In

addition, as lines can be replicated in plant breeding

trials, the analysis can also estimate non-additive ge-

netic effects. In self-pollinated or inbred lines, these

non-additive effects will reflect epistatic interactions

because inbreeding will largely eliminate dominance

effects. However, in hybrid crops both dominance and

epistatic effects may be reflected in non-additive ef-

fects. Thus, a single analysis will allow both the selec-

tion of potential parents for future breeding programs

using additive effects and promising commercial lines

combining both additive and non-additive effects, i.e.

the overall or total genetic effect. Genetic effects are

treated as random effects which is consistent with the

classical quantitative genetics approach and with the

underlying aim which is selection of superior parents

and commercial lines.

Information on genetic variance parameters nor-

mally only available from formal mating designs is

produced as a bi-product of such an approach. A

generalized definition of heritability is developed as

the classical definition which arises from simple quan-

titative genetic models will not be appropriate for the

mixed models considered in this paper.

The approach presented here is a mixed model form

of an ‘‘extended’’ classical quantitative genetics model.

It follows a long and ongoing tradition to attempt to

model the gene to phenotype relationship (see Cooper

and Hammer 2005 for a recent review).

This paper is structured as follows. The motivating

example used to illustrate the approach is presented

and an overview of current single trial analysis is out-

lined. Incorporation of pedigree information is dis-

cussed. This leads to defining a generalized heritability

for the resulting mixed model, which is used to analyze

the data and forms the basis of discussion that con-

cludes the paper.

Materials and methods

Description of motivating example

The data considered in this paper was produced as part

of the national Australian Grain Technologies’ (AGT)

network of advanced trials. A total of 253 advanced

wheat lines were tested as part of the 2004 Stage 3

trialling system. The pedigree of 129 of these lines was

known, while the other lines consisted of lines with

unknown pedigrees or filler lines. The genetic infor-

mation of these latter lines is not normally relevant.

However, the inclusion of these lines is important as

they provide information about environmental varia-

tion. Data was collected and is presented on 14 trials,

grown in locations around Australia. Most trials were

laid out in rectangular arrays of plots, comprising 12

columns by 42 rows. One trial had 18 columns by 28

rows. Plots were sown 1.32 m · 5 m and reduced to

1.32 m · 3.2 m before anthesis by herbicide applica-

tion. Seed was sown on a volume basis aiming for an

average 200 seeds per square meter. Most lines were

sown at all trials. Trials were designed using the

nearest neighbour option within Agrobase II (Agron-

omix, Canada) with two replicates per line. Yield was

recorded in grams per plot and converted to kilograms

per hectare for presentation.

Standard statistical approach for single trial analysis

In this paper, the performance of lines is analyzed

following the approach of Eckermann et al. (2001) for

single trials. Genetic line effects are included as
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random which supports the ultimate aim of the analysis

which is selection (Smith et al. 2005). The environ-

mental variation often present in field trials is modeled

according to Gilmour et al. (1997), who allow for the

three possible sources of environmental variation,

namely global, extraneous, and local. Here, in addition,

design and randomization based terms are included

(Cullis et al. 2006).

Thus, the statistical model fitted for a single trial,

referred to as the Standard model is

y ¼ Xsþ Zggþ Zuuþ g ð1Þ

The (n · 1) vector of phenotypic yield observations y is

arranged as trial rows within columns, where s is a

(t · 1) vector consisting of t fixed terms, and includes

an overall or population mean for the lines with pedi-

grees and similarly one for the filler lines. Global field

variation such as linear row or linear column effects

and extraneous field variation such as that introduced

through management practices (for example, harvest

order and varying plot-size) or gradient effects are also

included if required. X is the corresponding (n · t)

design matrix.

The random vector of (overall) genetic line effects

g(m · 1) of m lines with pedigree information is assumed

normally distributed with mean zero and variance rg
2

Im, where Im represents an (m · m) identity matrix.

The corresponding design matrix Zg is (n · m) and

relates observations to lines.

The vector u(b · 1) consists of subvectors u
ðbi�1Þ
i

where the subvector ui corresponds to the ith random

term. The corresponding design matrix Zu
(n · b) is par-

titioned conformably as ½Zu1
� � �Zub

�: The subvectors

are assumed mutually independent with variance r2
i Ibi

:

The subvectors include random terms for extraneous

field variation such as random row or column variation

and also design and randomization based blocking

factors. A subvector ug for filler line effects, that is lines

included in the trial which do not have pedigree

information, is also included.

The (n · 1) residual vector g represents local sta-

tionary variation. It is the sum of two independent

vectors, nðn�1Þ representing a spatially dependent mean

zero random stationary process and fðn�1Þ a zero mean

process representing measurement error. The mea-

surement error term f has variance rn
2In and the spatial

dependent term n has variance r2
eR
ðn�nÞ; where the

matrix R ¼ ðRc � RrÞ; represents the Kronecker pro-

duct between auto-regressive processes of order one

(AR1) in the column and row directions, respectively.

Thus, the residual vector g has distribution g� Nð0;RÞ;
where R ¼ r2

eRþ r2
nIn:

Thus, the line term g reflects the genetic variation

and the fixed s; random u and residual g terms reflect

the design and conduct of the trial, and as such provide

the underlying structure for non-genetic variation.

Extending the Standard statistical approach

The example data set contains lines with pedigree

information and replication. Therefore the (m · 1)

vector of (overall) genetic line effects g can be parti-

tioned into a vector of additive line effects a and a

vector of non-additive effects i, such that g = a + i. In

general, the components of non-additive effects, dom-

inance and epistasis cannot be distinguished by this

method. However, because lines in this data set have

been inbred for at least five generations they are as-

sumed homozygous due to inbreeding, and therefore

the dominance effect of a line is generally assumed to

be zero. As a result the non-additive effects are re-

ferred to here as epistatic effects.

Incorporating this partitioned vector of genetic line

effects into the Standard model 1, the extended model

or Pedigree model is

y ¼ Xsþ Zgaþ Zgiþ Zuuþ g ð2Þ

where terms Xs; Zu u, g; and Zg are defined as in the

Standard model 1. The vector of epistatic effects i(m · 1)

for the m lines with pedigree information has distri-

bution i ~ N(0,ri
2 Im).

The vector of additive effects a(m · 1) of the m lines

with pedigree information has distribution, a ~ N(0,r a
2 A),

where A(m · m) is the known additive relationship

matrix. If the additive relationship matrix is denoted as

A = {ajt }, then the diagonal terms are ajj = 1 + Fj,

where Fj is the inbreeding coefficient of line j and the

off-diagonal terms are ajt = 2fjt where 2fjt is the

numerator of the coefficient of relationship (Wright

1922), and fjt is the coefficient of parentage between

lines j and t.

The additive relationship matrix and its inverse can

be calculated in two ways. Firstly, A and its inverse A– 1

can be calculated following the approach of Henderson

(1976) but with modification for lines that have been

selfed (see The additive relationship matrix-adjustment

for self-fertilization). The package ASReml (Gilmour

et al. 2005) provides speedy calculation of A– 1 based

on the efficient algorithm of Meuwissen and Luo (1992)

and includes the modification for lines that have been

selfed (see Appendix). Alternatively, A can be found

by initially establishing a coefficient of parentage ma-

trix, where the diagonal elements of the matrix are

fjj = 0.5(1 + Fj) and the off-diagonal elements of the
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matrix are fjt. The algorithm of Sneller (1994) can be

used with an appropriate adjustment for selfing (see

The coefficient of parentage matrix-adjustment for self-

fertilization). To obtain the additive relationship matrix

A it is sufficient to multiply all the elements of the

coefficient of parentage matrix by two.

The vector of additive effects a and epistatic effect i

are assumed to be mutually independent, so that the

vector of overall or total genetic effects g = a + i has

distribution g ~ N(0,ri
2 Im + ra

2 A).

Generally, whether a test line is taken to the next

stage of the breeding and commercialization process

will depend on how its performance compares to a

control line. Therefore, the conditional probability that

the genetic effect of the jth line is greater than that of

the control line given the data [expressed as P(gj –

gcntl > 0 |y)] is used to rank lines. The control line

should be included in the trial and have pedigree

information.

Diagnostics for the models fitted include plotting a

sample variogram for examining spatial covariance

structure and residual plots (see Gilmour et al. 1997 for

details). These models are fitted using the software

ASReml (Gilmour et al. 2005). Estimation of variance

components is by residual or restricted maximum

likelihood (REML, Patterson and Thompson 1971),

using the average information REML algorithm (Gil-

mour et al. 2005). The ASReml code to fit the Pedigree

model Eq. 2 at one of the trials is included in ASReml

code for fitting the Pedigree model Eq. 2.

Heritability generalized

Heritability is a measure used to quantify the per-

centage of total variation that can be explained by the

genotypic component. Although the definition arises in

a number of ways, it is based on a simple quantitative

genetics model (Falconer and Mackay 1996) for a

randomly mating population. Broad sense means line

heritability is given by

H2 ¼ r2
g=ðr2

g þ r2=rÞ ð3Þ

while narrow sense means line heritability requires a

pedigree and a relationship matrix and is given by

h2 ¼ r2
a=ðr2

a þ r2=rÞ ð4Þ

The model presented for analysis of trial data, Eq. 2,

does not adhere to the standard assumptions. Thus,

Eqs. 3 and 4 may not be appropriate.

Cullis et al. (2006) consider the problem of defining

heritability in more complex settings. Their definition

is based on average pairwise prediction error variance

that is appropriate for general error covariance matri-

ces and diagonal genetic covariance matrices.

To develop a general approach, heritability is de-

fined as the squared correlation between the realized

(or predicted) and the true genetic effect (Falconer and

Mackay 1996). This definition implicitly assumes a

single genetic effect, whereas in general we have a

vector of genetic effects. In the standard quantitative

model this is not an issue, because genetic effects have

a ‘‘common heritability’’. In more complex models this

no longer holds.

To reduce the genetic effect to a scalar quantity,

consider a linear combination of the true genetic ef-

fects, namely cT g, and the corresponding predicted

genetic effects, namely cT~g: There are many choices for

c and the derivation of generalized heritability results

in a canonical set of vectors c.

A generic mixed model is used to present the ap-

proach. Thus, suppose

y ¼ Xsþ Zggþ Zuuþ g ð5Þ

where g ~ N(0,G), u ~ N(0,U), and g � Nð0;RÞ: The

models Standard Eq. 1 and Pedigree Eq. 2 are specific

cases. Note that

y � NðXs;VÞ

where V = R + Zg GZg
T + Zu UZu

T.

For the genetic effect cT~g; the heritability is defined

as

H2
c ¼

covðcTg; cT~gÞ2

varðcTgÞvarðcT~gÞ ¼
cTGZT

g PvZgGc

cTGc

where Pv = V– 1 – V– 1 X (XT V–1 X)–1 XT V–1. We

begin by choosing c to maximize the heritability subject

to cT Gc = 1 (normalization with respect to G).

We consider the Lagrangian Łc; where,

Łc ¼ cTGZT
g PvZgGc� kðcTGc� 1Þ ð6Þ

and choose c to maximize Łc: The detailed solution to

this problem is presented in Generalized definition of

heritability. The vector c that maximizes Hc
2 is an

eigenvector of the matrix Zg
T Pv Zg G with associated

eigenvalue k. In fact

max
c

H2
c ¼ k

so that this eigenvalue is a component of the full her-

itability.
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The full set of eigenvalues of Zg
T Pv Zg G will

characterize the full heritability. Let k 1,k 2,...,k m be the

full set of eigenvalues. Some of these eigenvalues will

be zero because of constraints on ~g: Suppose the first s

are zero. The generalized heritability is defined as

H2 ¼
Pm

i¼1 ki

m� s
¼
Pm

i¼sþ1 ki

m� s
ð7Þ

The classical quantitative genetics model, with m test

lines each with r replicates (and total number of

observations n = mr) is

y ¼ 1nlþ Zggþ g ð8Þ

where Zg = Im�1r, g ~ N(0,rg
2 Im) is the vector of ge-

netic effects and g � Nð0; r2InÞ: In this case the matrix

Zg
T Pv Zg G has one zero eigenvalue and m – 1 re-

peated eigenvalues that equal H2 ¼ r2
g=r

2
g þ r2=r; the

mean line heritability. Thus, Eq. 7 reduces to the mean

line heritability.

In the classical quantitative genetic model Eq. 8, g ~
N(0, ra

2A) and the number of replicates r = 1, so that

lines are related with additive relationship matrix A,

the generalized heritability is a narrow sense herita-

bility and can be shown to be

h2 ¼ 1

m� 1

Xm

i¼2

1ir
2
a

1ir2
a þ r2

Again, s = 1. The 1i are the eigenvalues of

ðIm � P1m
ÞA; where P1m

is the projection matrix onto

1m. This differs from the usual narrow sense heritability

given by Eq. 4. The generalized definition takes into

consideration the pedigree structure rather than

implicitly assuming independence of lines.

In the Pedigree model we can obtain a broad sense

heritability (H2) by considering G = ri
2 Im + ra

2 A and a

narrow sense heritability (h2) by considering G = ra
2 A.

However, it is not possible to present analytical solu-

tions and numerical methods must be used to calculate

the heritability.

Importantly, we can write

ZT
g PvZgG ¼ Im �G�1CZZ

where CZZ is the prediction error variance matrix for

g, so that eigenvalue calculations can be based on Im –

G–1 CZZ.

For large problems an approximation to the general-

ized heritability may be very useful. Using the property

that the trace of a matrix is the sum of the eigenvalues of

that matrix, an approximate heritability is

H2 ¼ 1� trðG�1CZZÞ
m

 !

and the trace term can be found by summing element

by element product of the two matrices. This ignores

the possibility of zero eigenvalues.

Results

For the AGT data, the coefficient of parentage matrix

was calculated using International Crop Information

System (ICIS), which uses the algorithm of Sneller

(1994). A modification due to selfing was implemented

(see The coefficient of parentage matrix-adjustment

for self-fertilization). This coefficient of parentage

matrix was then used to calculate the additive rela-

tionship matrix A.

For each trial, the Standard model and the Pedigree

model were fitted. A summary of non-genetic or

environmental variation is presented for each trial

(Table 1). The column and row correlations of the

stationary spatial variation from the Pedigree and

Standard model were very similar, so that only those

from the Pedigree model are presented (Table 1). The

column correlation parameter was not significant for

four trials. Notice that the row AR1 correlation is very

large indicating strong smooth spatial variation at all

trials. A measurement error term was significant

(P < 0.05) at 13 trials; at one trial (Robinvale) it was

not significant.

The Standard and Pedigree models each had the

same environmental terms fitted, so that the Standard

model was a sub-model of the Pedigree model. A

residual or restricted maximum likelihood ratio test

(REMLRT) is used to compare these models and test

the significance of the additive component, but as the

null hypothesis H0 was on the boundary (ra
2 = 0), the

reference distribution was nonstandard. The P value

was approximated using a mixture of half v0
2 and half v1

2

(Self and Liang 1987; Stram and Lee 1994, but see

Crianiceanu and Ruppert 2004 for a discussion on this

approximation).

The Pedigree model was better than the Standard

model at all trials indicating that the additive propor-

tion of the overall genetic variation was (highly) sig-

nificant (Table 2). The variance of the difference

between a random term g and its Best Linear Unbiased

Predictor (BLUP) ~g is known as the prediction error

variance or varð~g� gÞ: For all trials, the average esti-

mated prediction error variance was lower under the

Pedigree model, which was expected under a model
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which describes the underlying distribution of g more

accurately. Note that the prediction error variance

estimated under both models is approximate because

the variance components in the prediction error vari-

ance are replaced by their estimated REML values.

This is also true of the BLUPs and hence these are

empirical BLUPs or E-BLUPs.

The total genetic variation found at the 14 trials,

varied enormously. Merredin, Wongan Hills, and

Robinvale had comparably small total genetic varia-

tion and Narrabri by far the greatest total genetic

variation. At a particular trial, the overall genetic

variation of g being predicted by the Pedigree model

was higher than under the Standard model (Table 3).

In some trials the difference was substantial. For the

Pedigree model, the proportion of the total genetic

variation represented by the additive component var-

ied across trials. At five trials all genetic variation was

found to be additive. The REML estimate of the epi-

static variance at these trials was on the boundary.

The broad sense heritability of the Standard model

was higher than the Pedigree model (Table 3). This

higher heritability is likely to be the result of an up-

ward bias as a result of an incorrect model (Costa e

Silva et al. 1994). In particular, the Standard model

assumes independence of line when in fact correlation

(in the form of the A matrix) exists between lines. The

narrow sense heritability which is able to be deter-

mined under the Pedigree model is a more appropriate

indicator of heritability (Viana 2005) and as such is the

preferable indicator.

There were high correlations between the overall

total genetic E-BLUPs of the Standard ð~gÞ and the

Pedigree model ð~g ¼ ~aþ~iÞ (Table 3). This agreement

Table 1 Environmental
terms fitted in the analysis of
yield (tonne/ha) for each of
the trials. All trials had a
random block term added to
account for the
randomization of the trial
design

aColumn and row correlations
presented were from the
Pedigree model
bA measurement error term
was fitted at these trials
cSpl(term) indicates a
smoothing spline (Verbyla
et al. 1999) of term was fitted

Trial Location Environmental terms Columna

AR1
Rowa

AR1
Random Fixed

1 Coomalbidgupb Spl(row) columnc Linear row, harvest order,
row:(linear column)

0.54 0.83

2 Coonalpynb Column 0 0.84
3 Kapundab Linear column 0.38 0.79
4 Merredinb Column 0 0.91
5 Mingenewb Linear column 0.21 0.81
6 Minnipab Spl(row)c Linear row 0.43 0.87
7 Narrabrib Column, row 0.40 0.81
8 Narranderab Linear column 0.35 0.84
9 Pinnaroob Spl(column),

columnc
Linear column,

plot size, linear row
0.32 0.47

10 Robinvale Row 0.18 0.71
11 Roseworthyb 0.48 0.92
12 Scaddonb Column Linear row 0 0.92
13 Temorab Column Linear row 0 0.79
14 Wongan Hillsb Row Linear row 0.64 0.93

Table 2 Tests of significance
for improvement in the
prediction of yield (tonne/ha)
resulting from the Standard
versus Pedigree model and
the average prediction error
variance of the total genetic
effect (g) for the Standard and
the Pedigree model

aResidual or restricted
maximum likelihood ratio test
of Ho, ra

2 = 0

Trial Location REMLRTa P value of
additive
component

Average prediction
error variance

Standard Pedigree

1 Coomalbidgup 8.32 0.0020 234 226
2 Coonalpyn 29.6 < 0.0001 184 168
3 Kapunda 15.7 < 0.0001 171 160
4 Merredin 12.2 0.0002 48.9 46.9
5 Mingenew 12.8 0.0002 164 157
6 Minnipa 5.90 0.0076 57.8 56.5
7 Narrabri 19.7 < 0.0001 360 349
8 Narrandera 20.9 < 0.0001 95.8 89.9
9 Pinnaroo 18.8 < 0.0001 130 114
10 Robinvale 19.6 < 0.0001 59.2 53.2
11 Roseworthy 18.7 < 0.0001 178 168
12 Scaddon 3.24 0.0359 160 155
13 Temora 14.2 < 0.0001 152 140
14 Wongan Hills 15.9 < 0.0001 52.3 48.6
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was reflected in terms of the top 20 ranking lines.

Across all trials, an average of 80% of the top 20

ranking lines were the same under both models.

In trials, where the epistatic component of the ge-

netic variation was significant, the correlations between

the genetic E-BLUPs of the Standard ð~gÞ and the

additive genetic E-BLUPs of the Pedigree model ð~aÞ
were lower (Table 3), than in the comparison of the

correlation between the overall total genetic E-BLUPs

of the Standard and Pedigree model. However, the

lower correlations do not reflect the differences in the

top 20 ranking lines. If decisions on the best potential

parents were based on the predicted yield under the

Standard model rather than on the additive predicted

yield of the Pedigree model then 30% of these deci-

sions would be incorrect (Fig. 1).

Discussion

This paper develops a statistical approach that can be

used in crop breeding trials with pedigree information

and replication of lines. It involves fitting a model re-

ferred to here as the Pedigree model that predicts

additive and non-additive genetic effects of test lines

and simultaneously models spatial variation. In inbred

lines the non-additive effects will represent epistatic

effects. However, with hybrid crops, non-additive ef-

fects will also include dominance effects. The approach

offers advantages over current methods in that it en-

ables the selection of the best performing line for

commercial release and the best parents for further

crosses in a single analysis and from a standard crop

breeding trial.

The overall genetic effect or value of a line is ob-

tained from the sum of additive and non-additive ef-

fects (epistatic effects). Both terms are deemed

important in determining the commercial worth of a

line as it is the overall performance of a line and

therefore overall (or total) genetic value that is

important. The epistatic component is clearly impor-

tant at the majority of trials. In some cases it makes a

line suitable for a particular environment or conversely

it is what deems it unsuitable. The total genetic varia-

tion explained is higher under the Pedigree model. The

Pedigree model has also been shown to predict a ge-

netic effect that has a lower prediction error variance

on average than that determined under the Standard

model and therefore is a preferable means of obtaining

the genetic value of a line.

The additive effects of the Pedigree model are

breeding values and as such are the preferable means

of determining potential parents for breeding pro-

grams. The breeding value of every line (with pedigree

information) can be obtained without resorting to

specialized trial designs such as diallel crosses which

require extra resources and are limited in the number

of lines that can be included. Using the Standard model

to determine potential parents may lead to the selec-

tion of lines that do not have the highest breeding

value and therefore may lead to subsequent breeding

programs that are not optimal.

A concern with this method is that the relationship

matrix A is based on expected (average) relationships

Table 3 Total or overall genetic variance rg
2 of yield (tonne/ha) at each of the trials from the Standard and Pedigree models and broad

(H2) and narrow sense (h2) heritability (calculated using the generalized heritability formula 7)

Trial Location Standard Pedigree Correlationb

rg
2 H2 rg

2 Percent additivea H2 h2 ð~g; ~aþ~iÞ ð~g; ~aÞ

1 Coomalbidgup 90.26 0.69 110.29 77.08 0.64 0.42 0.986 0.934
2 Coonalpyn 59.91 0.71 68.20 100.00 0.60c 0.60 0.971 0.971
3 Kapunda 19.06 0.24 26.15 100.00 0.22c 0.22 0.813 0.813
4 Merredin 2.27 0.47 2.38 52.66 0.43 0.18 0.961 0.767
5 Mingenew 45.67 0.70 55.05 81.30 0.64 0.45 0.984 0.940
6 Minnipa 8.89 0.81 9.96 63.12 0.77 0.38 0.996 0.911
7 Narrabri 375.34 0.82 441.82 81.36 0.77 0.54 0.993 0.958
8 Narrandera 17.33 0.73 23.82 100.00 0.66c 0.66 0.982 0.982
9 Pinnaroo 14.12 0.40 16.12 100.00 0.32c 0.32 0.872 0.872
10 Robinvale 4.23 0.58 4.68 92.65 0.48 0.42 0.944 0.921
11 Roseworthy 55.45 0.71 60.31 76.10 0.64 0.41 0.982 0.918
12 Scaddon 29.32 0.56 37.88 77.95 0.53 0.35 0.977 0.924
13 Temora 22.18 0.47 29.58 100.00 0.41c 0.41 0.930 0.930
14 Wongan Hills 3.81 0.64 5.17 100.00 0.56c 0.56 0.966 0.966

aAdditive variation as a percent of the total or overall genetic variation (rg
2) of the Pedigree model

b ~g is the E-BLUP of g from Eq. 1 and ~a and ~i are the E-BLUPs of a and i, respectively, from Eq. 2
cThe epistatic variance component was on the boundary at these trials, therefore H2 and h2 are equivalent
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between individuals. For instance full-siblings will have

identical coefficients of parentage with other individ-

uals, even though it is likely they do not share identical

genotypes. In particular, in plant populations where

selection of lines over many generations is undertaken,

the relationship between full siblings may be much

greater than expected and could be much higher with

one parent than the other. If genotypic information

was available (in the form of marker data for instance)

then a more accurate estimation of the relationship

between individuals could be determined (see Crepi-

eux et al. 2004). The selection of lines that occurs in

plant breeding trials may also result in a biased esti-

mate of the additive variance. Van der Werf and de

Boer (1990) suggest bias is eliminated when relation-

ship information of all selected ancestors is included. In

the example presented here, every attempt was made

to do this with lines of known pedigree, so that in most

cases ancestry was traced back several generations and

used in the formation of the relationship matrix. Van

der Werf and de Boer (1990) also found that ‘‘bias was

smaller in a small population and (or) when selection

had been practised for just a few generations’’. This

phenomena is discussed by Walsh (2005), and may help

counteract bias introduced by selection.

The development of a generalized definition of

heritability enables pedigree and environmental infor-

mation to be taken into consideration in models which

do not conform to the simple quantitative model which

assumes independence of lines.

The approach presented requires a separate fit for

each trial, so that genotypic effects vary across envi-

ronments. This means that these effects are con-

founded with the genotype by environment interaction.

Thus, it is important to extend the ideas of this paper to

multienvironment trials which allow the genotype by

environment effects to be quantified, and this is a

current topic of research.
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Fig. 1 The additive predicted (breeding value) yield (kg/ha) for
the Pedigree model plotted against the predicted yield (kg/ha) of
the Standard model. Horizontal and vertical lines show the cut off

for the top 20 ranking varieties under the Pedigree and Standard
model, respectively. Each trial has been plotted on an individual
scale to enhance the presentation
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Appendix

The additive relationship matrix-adjustment

for self-fertilization

In plant breeding, the test lines that are included in

trials are often the result of five or six generations of

self-fertilization. The method of Henderson (1976) was

developed for use in animal pedigrees, and as such

requires for any particular line that is a result of n

generations of self-fertilization that all the previous

n – 1 generations of lines involved in its development

are included in the pedigree. Clearly, in plant breeding

trials where each test line has undergone the self-fer-

tilization process up to n times, this would require an

(unnecessarily) large pedigree to be recorded in order

to obtain accurate estimates of ajt. A modification in

the calculation of the inbreeding coefficient Fj and

therefore in the ajj value, can be incorporated into the

algorithm, so that it is unnecessary to include the n – 1

generation of lines in the pedigree, just the number of

generations n of self-fertilization need be recorded for

each line.

If both parents, s and d of individual j are known

then, the adjustment under n generations of self-fer-

tilization is given by

ajj ¼ 2� 0:5n�1 þ 0:5nasd ð9Þ

which reduces to Henderson’s equation under no self-

fertilization, i.e. n = 1, also note that ajj tends to 2 as n

tends to infinity.

Under n generations of self-fertilization, when one

parent is known or when no parents are known the

value of ajj can be shown to be

ajj ¼ 2� 0:5n�1:

The coefficient of parentage matrix-adjustment

for self-fertilization

The method of Sneller (1994) does not take into con-

sideration self-fertilization. A modification in the cal-

culation of the inbreeding coefficient Fj and therefore

fjj is necessary when dealing with individuals that have

been self-fertilized for n generations.

Under self-fertilization, the coefficient of parentage

fjj of j in the nth generation is given by half Eq. 9 as

follows:

fjj ¼ 1� 0:5n þ 0:5nfsd ð10Þ

When one parent is known or when no parents are

known the value of fjj is fjj = 1 – 0.5n

ASReml code for fitting the Pedigree model 2

The following is the code for the .as ASReml file used

for fitting the Pedigree model to a trial.

The stage3.giv is a file containing the inverse of the

additive relationship matrix. ASReml requires a file

which is just the lower triangle of this matrix. It is

important to ensure that the numbering of lines in

knownped factor corresponds directly to the ordering

of rows and columns in the ‘‘.giv’’ file, so that row one

and column one of the A inverse matrix contain the

additive relationships of individual 1, which should

correspondingly be labeled as 1 in the knownped fac-

tor. The ‘‘.giv’’ file can be created in ASReml if a

pedigree file is supplied, and ASReml now implements

the adjustment for inbred lines.

The stage3rba.asd is a text file containing the data.

The knownped and filler columns have been created

from the line column in which the lines are numbered

from 1:253. In particular, the knownped is a column

which has been defined as a factor with 129 levels. The

levels correspond to the lines with known pedigree. It

has ‘‘NA’’s in the positions which correspond to filler

lines. The filler is a column which has been defined as a

factor with 124 levels, filler lines are defined as 1:124

and lines which have pedigree have ‘‘NA’’s. The ped

column is a factor which has two levels so that separate

overall means can be fitted for filler lines and lines with

known pedigree.

The additive genetic effect for each line is fitted by

including the term knownped in the random part of the

model specification and the epistatic genetic effect for

each line is fitted by including the term ide(knownped)

in the random part of the model specification, the units

term is the measurement error term.
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The last two lines are the predict statements to ob-

tain the elements of the estimated prediction error

variance matrix, so that the generalized heritability can

be calculated. ASReml places these in the ‘‘.pvs’’ file.

The estimated prediction error variance of the total

genetic effects is used for calculating a broad sense

heritability and those of the additive effects for calcu-

lating a narrow sense heritability. Calculation of gen-

eralized heritability was carried out using R (R

Development Core Team 2005). The R code is avail-

able from the corresponding author.

Generalized definition of heritability

The Lagrangian given by Eq. 6 is to be optimized with

respect to c. Thus, differentiating Łc with respect to c

and setting to zero, we find

ZT
g PvZgGc ¼ kc: ð11Þ

Thus, c is an eigenvector of the matrix Zg
T Pv Zg G with

eigenvalue k. Not only can the c that maximizes the

squared correlation be found, but a complete set of

eigenvectors c for Zg
T Pv Zg G with associated eigen-

values. Notice that from Eq. 11

cTGZT
g PvZgGc ¼ kcTGc

¼ k

using the constraint. Thus, the eigenvalues provide a

set of heritability components that can be used to

provide an overall measure of heritability.

From results on mixed models, GZg
TPv Zg G = G –

(Zg
T SZg + G–1)–1 where S = R–1 – R–1 X(XT R–1X)–1

XT R–1. Now (Zg
T SZg + G–1)–1 = CZZ is the partition

of the inverse of the mixed model coefficient matrix

corresponding to g. This latter term CZZ is also

equivalent to the prediction error variance matrix (i.e.

varð~g� gÞ), an estimate of which is available in the

software ASReml (Gilmour et al. 2005) via the predict

statement. So

ZT
g PvZgG ¼ Im �G�1CZZ ð12Þ

and eigenvalues of this matrix are required to deter-

mine the generalized heritability.
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